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Abstract
With a view to obtaining further insight into the theoretical understanding of the
problem of coupled harmonic oscillators we carry out the construction of exact
dynamical invariants for momentum- and time-dependent (TD) Hamiltonian
systems in two dimensions. In particular, we investigate the systems

H1 = 1
2 [α1p

2
1 + α2p

2
2 + β1x

2
1 + β2x

2
2 + 2β3x1x2 + 2α3p1p2]

H2 = 1
2α(p

2
1 + p2

2) + 1
2β(x

2
1 + x2

2 ) + f (p1x2 − p2x1)

where the parameters αi, βi , i = 1, 2, 3, α, β, f may be TD. While the Lie
algebraic method is employed for the TD forms ofH1 andH2, the rationalization
method, modified here for the momentum-dependent case, is used for the time-
independent versions of H1 and H2. The role and scope of the invariants so
constructed is pointed out.

PACS number: 05.45.-a

1. Introduction

Invariants of a dynamical system, if they exist and become available, can prove [1–3] to be an
asset as far as the theoretical understanding of the system is concerned. The search for these
dynamical invariants for one- and higher-dimensional systems in terms of the methods of their
construction has been [4] going on for a long time now. Also, in recent years, the explicit time
variable dependence of the underlying parameters of the system has suggested another line of
study for these systems [3, 5]. It may be mentioned that these studies, dealing mainly with
the construction and use of exact [3] invariants, have only been carried out for a few systems.
A large number of dynamical systems in the literature have been studied using the so-called
approximation or perturbation methods [6,7] and accordingly one deals with the ‘approximate’
invariants or the ‘first integrals’ of motion for the system. Here, however, we shall restrict
ourselves to the study of exact invariants. Furthermore, while the coupled harmonic oscillator
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problem in two dimensions offers an example in this general scheme of study, its variants with
reference to the singular coupling terms has again been [3,5] the subject of research for the last
three decades or so under the heading of generalized Ermakov (or Lewis) systems, particularly
for the time-dependent (TD) cases.

In this paper we focus our attention on the study of two-dimensional systems described
respectively by the Hamiltonians

H1 = 1
2 (α1p

2
1 + α2p

2
2) + 1

2 (β1x
2
1 + β2x

2
2 ) + β3x1x2 + α3p1p2 (1)

and

H2 = 1

2m
(p2

1 + p2
2) +

1

2
mω2(x2

1 + x2
2 ) + f (p1x2 − p2x1) (2)

in which the coupling terms not only involve the dependence on the momenta p1 and p2 but
the parameters αi, βi , i = 1, 2, 3,m, ω2 and f could also be TD. While we carry out the
construction of dynamical invariants for the TD cases of H1 and H2 specifically using the Lie
algebraic approach [3], the invariants for the time-independent (TID) cases will be obtained
using both rationalization and Lie algebraic methods. As the coupling terms in (1) now depend
on the momentap1 andp2, we modify the existing [2,3] rationalization method for this purpose
in section 2.

With regard to the momentum-dependent coupling in the Hamiltonian, such a situation
is encountered in a variety of physical situations, namely in the description of motion of a
charged particle in a magnetic field [8,9] or in the Bell’s inequality experiments employing [10]
four coupled harmonic oscillators. In fact, in the latter case the Hamiltonian H1 of (1) is a
physical realization of the interaction Hamiltonian of the form Hint = k(x1x2 + p1p2), where
k = α3 = β3 is the coupling constant. A coupling of the form kx1x2 is known in a mechanical
context and it has a relation with the energy of two mechanical oscillators (the energy of a
spring connected between two mechanical oscillators, in general, is of the form 1

2k
′(x1 − x2)

2

and the same gives rise to the coupling −k′x1x2 in the Hamiltonian). On the other hand,
the coupling of the form kp1p2, though unusual in the mechanical context, can appear [9]
in the context of electrical circuits where the charge plays the same role as position and the
current as velocity in mechanical systems. In electrical circuits, however, the coupling kp1p2

is recognized as the mutual inductance term in the Hamiltonian [9, 10],

H = 1

2
L1

(
dQ1

dt

)2

+
1

2

(
1

C1
+

1

CM

)
Q2

1 +
1

2
L2

(
dQ2

dt

)2

+
1

2

(
1

C2
+

1

CM

)
Q2

2 +
1

CM

Q1Q2 + M

(
dQ1

dt

) (
dQ2

dt

)
(3)

which corresponds to a pair of coupled inductance–capacitance (LC) circuits, namely, when
the L1C1 and L2C2 circuits are coupled through the capacitor CM . Furthermore, the coupling
of inductances L1 and L2 contributes to the mutual inductance M . Moreover, the study of
electrical circuits with time-varying capacitors and inductors, particularly with reference to
their memory property, has become [11] of considerable interest in recent years.

Recall that the nonlocal potentials used in nuclear physics to study the binding energy
of nuclei are also sometimes considered as momentum dependent. Moreover, the interaction
k(x1x2+p1p2) performs the same function as a beam splitter does in an optical experiment [10].
Very recently ’t Hooft [12] and Blasone et al [13] studied momentum-dependent terms in the
Hamiltonian structure in the context of the so-called holographic principle and in the treatment
of quantum gravity as a dissipative and deterministic system. The study of the Hamiltonian (2)
is needed [14] in a variety of situations. For example, H2 of equation (2) is used in the study of
various phenomena at the quantum level, namely to study [15] the quantum motion of a particle
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in a Paul trap, to describe [16] a quantized electromagnetic field in a Fabry–Parot cavity, to
control the atoms [17] by means of laser beams or other electric and magnetic fields [18], etc.

Before proceeding further we briefly outline here the essential steps of the Lie algebraic
method which has been employed [3, 5, 19] in the past for a variety of dynamical systems. In
this method, one expresses the two-dimensional TD Hamiltonian in the form

H =
∑
i

hi(t)�i(x1, x2, p1, p2). (4)

Here hi are the TD coefficients and �i are the phase space functions which are required to
close the algebra with respect to the Poisson bracket,

[�i, �j ] =
∑
k

Ck
ij�k (5)

with Ck
ij as the structure constants of the Lie algebra. Further, for the two-dimensional case

the Poisson bracket is defined as

[A,B] = ∂A
∂x1

∂B
∂p1

− ∂A
∂p1

∂B
∂x1

+
∂A
∂x2

∂B
∂p2

− ∂A
∂p2

∂B
∂x2

. (6)

For the purposes of closing the algebra through (5) one might need some additional �l which
can be introduced by setting the corresponding coefficients hl(t) = 0 in (4). Since the invariant
I is also a member of the dynamical algebra, the same can be expressed as

I =
∑
m

λm(t)�m(x1, x2, p1, p2) (7)

which also satisfies
dI

dt
= ∂I

∂t
+ [I,H ] = 0. (8)

Now using (4) and (7) in (8) and subsequently rationalizing the resultant expression after
using (5), one arrives [3, 19] at a set of first-order, coupled differential equations, namely,

λ̇k +
∑
i

[ ∑
j

Ck
ijhj (t)

]
λi = 0. (9)

These equations can be solved for λk and their substitution in (7) leads to the required invariant
I .

In section 2, we construct the second invariant for the TID versions of H1 and H2 (as H1

and H2 themselves represent constants of motion of the system concerned). In section 3, we
make use of the Lie algebraic approach to derive at least one invariant for the TD versions of
each H1 and H2. In fact, the Lie algebraic approach commands [3] several advantages over
the rationalization method, particularly for the TD systems, not only in terms of the closure
property of the Poisson bracket algebra of phase space functions but also for its straightforward
extension to the corresponding [20,21] quantum system. Finally, concluding remarks are given
in section 4 by highlighting the possible role of these constructed invariants in different physical
situations.

2. Second invariant for momentum-dependent potentials

2.1. General results

While the Lie algebraic approach for the construction of dynamical invariants automatically
takes care of the momentum dependence of the system through the Poisson bracket algebra
of phase space functions, its use, however, becomes complicated at the level of the closure
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property of the algebra for a large number of systems. Therefore, one resorts to using the
conventional rationalization method for this purpose. For a two-dimensional momentum-
dependent Hamiltonian of the form

H = 1
2 (p

2
1 + p2

2) + A(x1, x2)p1 + B(x1, x2)p2 + W(x1, x2). (10)

Dorizzi et al [22] have discussed the construction of the second invariant. Since the system (10)
can easily be identified with (2) but not with (1), we proceed here to investigate a general form
of the momentum-dependent two-dimensional Hamiltonian of the form

H(x1, x2, p1, p2) = 1
2 (α1p

2
1 + α2p

2
2) + V (x1, x2, p1, p2) (11)

for which Hamilton’s equations of motion can be written as
◦
x1 = α1p1 +

∂V

∂p1

◦
p1 = − ∂V

∂x1
(12a)

◦
x2 = α2p2 +

∂V

∂p2

◦
p2 = − ∂V

∂x2
(12b)

or, in a more compact form these equations of motion can be expressed as

◦◦
x i ≡

◦
ξ i = vi +

∂2V

∂xj∂pi

ξj (13)

where ξi = ◦
xi , i = 1, 2, and

v1 = −
[(

α1 +
∂2V

∂p2
1

)
∂V

∂x1
+

∂2V

∂p2∂p1
· ∂V
∂x2

]
(14a)

v2 = −
[(

α2 +
∂2V

∂p2
2

)
∂V

∂x2
+

∂2V

∂p1∂p2
· ∂V
∂x1

]
. (14b)

Next, for the second invariant I of the system (11) up to second order in the momenta, we
make an ansatz of the form

I = a0 + aiξi + 1
2aij ξiξj (15)

where i, j = 1, 2 and the coefficient functions a0, ai and aij are functions of x1 and x2 with
aij = aji . The fact that I is an invariant of the system (11) requires

dI

dt
= [I,H ] = 0 (16a)

or

a0,iξi + ai,j ξiξj + ai
◦
ξ i + 1

2aij,kξiξj ξk + 1
2aij (

◦
ξ iξj + ξi

◦
ξ j ) = 0 (16b)

which, after using (13) for
◦
ξ i and rationalizing the resultant expression with respect to the

products of ξi , yields [3] the following equations:

aivi = 0 (17)

a0,i + aij vj +
∂2V

∂xi∂pj

aj = 0 (18)

ai,j + aj,i + akj
∂2V

∂xi∂pk

+ aik
∂2V

∂xj∂pk

= 0 (19)

aij,k + ajk,i + aki,j = 0. (20)

Note that while the solution of (20) can be obtained (cf [3], ch 2) immediately as

a11 = 1
2c1x

2
2 + c2x2 + c3 a22 = 1

2c1x
2
1 + c4x1 + c5

a12 = − 1
2 (c1x1x2 + c2x1 + c4x2 − 2c6)

(21)
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where ci , i = 1, . . . , 6, are arbitrary constants of integration, the expanded versions of
equations (17)–(19) are given by

a1v1 + a2v2 = 0 (22)

∂a0

∂x1
+ a11v1 + a12v2 + a1

∂2V

∂x1∂p1
+ a2

∂2V

∂x1∂p2
= 0 (23a)

∂a0

∂x2
+ a21v1 + a22v2 + a1

∂2V

∂x2∂p1
+ a2

∂2V

∂x2∂p2
= 0 (23b)

∂a1

∂x1
+ a11

∂2V

∂x1∂p1
+ a21

∂2V

∂x1∂p2
= 0 (24a)

∂a2

∂x2
+ a22

∂2V

∂x2∂p2
+ a12

∂2V

∂x2∂p1
= 0 (24b)

∂a1

∂x2
+
∂a2

∂x1
+ a11

∂2V

∂x2∂p1
+ a22

∂2V

∂x1∂p2
+ a12

(
∂2V

∂x2∂p2
+

∂2V

∂x1∂p1

)
= 0. (24c)

Now we look for the solutions of equations (22)–(24c) for a given potential V . As a matter
of fact these equations represent an overdetermined system of equations to find the coefficient
functions a0, a1, a2. What we shall give below are some sort of constraining relations to be
satisfied by the given potential. For simplicity we assume, in accordance with (22), that the
coefficient functions a1 and a2 are given by

a1 = v2 a2 = −v1. (25)

This immediately leads to three constraining relations from equations (24a)–(24c), namely

∂v2

∂x1
+ a11

∂2V

∂x1∂p1
+ a21

∂2V

∂x1∂p2
= 0 (26)

∂v1

∂x2
− a22

∂2V

∂x2∂p2
− a12

∂2V

∂x2∂p1
= 0 (27)

∂v2

∂x2
− ∂v1

∂x1
+ a11

∂2V

∂x2∂p1
+ a22

∂2V

∂x1∂p2
+ a12

(
∂2V

∂x2∂p2
+

∂2V

∂x1∂p1

)
= 0 (28)

which are termed [3] as ‘potential’ equations in the sense that their solutions would directly
provide the potential function V (x1, x2, p1, p2) that admit the second-order invariant (15).
Also, these relations can be used to determine the arbitrary ci constants appearing in (21).
Thus, the coefficient functions aij and ai are given by equations (21) and (25), a0 from (23a)
and (23b) and finally using these results the invariant I can be derived immediately from (15)
for the system (11).

It may be mentioned that the potential equations (26)–(28) are obtained after using the
assumption (25) for the solution of (22). This setting, however, does not always work,
particularly when the functions v1 and v2 depend on the momenta p1 and p2 (cf system H2 of
equation (2)). In that case one has to rationalize all six equations (22)–(24c) to determine not
only the unknown ci appearing in equation (21) but also the remaining coefficient functions
a1, a2 and a0.

In what follows we apply these general results to some specific forms of V (x1, x2, p1, p2),
particularly the ones appearing in the systems H1 and H2.

2.2. Applications

In order to demonstrate the applications of the general prescription of section 2.1, we consider
here the potential functions appearing in systems (1) and (2).
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Case I. Corresponding to system (1) consider the momentum-dependent potential

V (x1, x2, p1, p2) = 1
2 (β1x

2
1 + β2x

2
2 + 2β3x1x2) + α3p1p2. (29)

For this simple case, v1 and v2 can be obtained from (14) as

v1 = −[(α1β1 + α3β3)x1 + (α1β3 + α3β2)x2]

v2 = −[(α2β3 + α3β1)x1 + (α2β2 + α3β3)x2].
(30)

Use of (30) and (21) in the potential equations (26)–(28) immediately yields the constraining
relations

α2β3 + α3β1 = 0 (31a)

α1β3 + α3β2 = 0 (31b)

α1β1 = α2β2 = α0β0 (say) (31c)

on the potential parameters in (29). In fact only two of these conditions are independent.
In the mechanical context, here we shall consider the case when the masses of the coupled
oscillators are proportional to the squares of the corresponding frequencies as dictated by
the condition (31c). On the other hand, in the electrical context (cf Hamiltonian (3)) this
condition is tantamount to the fact that the frequencies are inversely proportional to the
respective inductances. These restrictions give rise to the forms of v1 and v2 from (30) as
v1 = −A0x1, v2 = −A0x2 with A0 = α0β0 + α3β3. Furthermore, after using these results
equations (23a) and (23b) can be integrated to yield a unique expression for a0(x1, x2), namely

a0(x1, x2) = A0(
1
2c3x

2
1 + 1

2c5x
2
2 + c6x1x2) (32)

and it will also set simultaneously c2 = c4 = 0. Thus, for other coefficient functions we obtain

a1 = −A0x2 a2 = A0x1 a11 = 1
2c1x

2
2 + c3

a22 = 1
2c1x

2
1 + c5 a12 = − 1

2 (c1x1x2 − 2c6).
(33)

Finally, the invariant I can be obtained from (15) as

I = A0[ 1
2c3x

2
1 + 1

2c5x
2
2 + c6x1x2 + α2x1p2 − α1p1x2 + α3(p1x1 − p2x2)]

+ 1
4c1[α2x1p2 − α1p1x2 + α3(p1x1 − p2x2)]

2 + 1
2 [c3(α1p1 + α3p2)

2

+c5(α2p2 + α3p1)
2] + c6(α1p1 + α3p2)(α2p2 + α3p1) (34)

where ξ1 ≡ ◦
x1 = α1p1 + α3p2 and ξ2 ≡ ◦

x2 = α2p2 + α3p1 are used from equations (12).
Note that for the TID version of system (1) it is also possible to derive an invariant in a

heuristic manner, i.e. without going through the formal procedure of section 2.1. In fact it can
be seen that for the system (1), Hamilton’s equations of motion turn out to be

◦
x1 = ∂H1

∂p1
= α1p1 + α3p2

◦
p1 = −∂H1

∂x1
= −(β1x1 + β3x2) (35)

◦
x2 = ∂H1

∂p2
= α2p2 + α3p1

◦
p2 = −∂H1

∂x2
= −(β2x2 + β3x1). (36)

These equations can be expressed as
◦◦
x 1 = −(α1β1 + α3β3)x1 − (α1β3 + α3β2)x2 (37)
◦◦
x 2 = −(α2β3 + α3β1)x1 − (α2β2 + α3β3)x2. (38)

Now, after multiplying equation (38) by
◦
x1 and (37) by

◦
x2 and adding the resultant equations

we arrive at
◦
x1

◦◦
x 2 +

◦◦
x 1

◦
x2 = −[(α2β3 + α3β1)

◦
x1x1 + (α2β2 + α3β3)

◦
x1x2

+(α1β1 + α3β3)x1
◦
x2 + (α1β3 + α3β2)x2

◦
x2]. (39)
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For the case when α1β1 = α2β2 = α0β0 (say), expression (39) can be immediately integrated
to yield the invariant of the system (1) in the form

I = (α1p1 + α3p2)(α2p2 + α3p1) + 1
2 [(α2β3 + α3β1)x

2
1

+(α1β3 + α3β2)x
2
2 + 2(α0β0 + α3β3)x1x2] (40)

where
◦
x1 = α1p1 + α3p2,

◦
x2 = α2p2 + α3p1 is used. Note that while both the forms (34)

and (40) of the invariant I conform to the requirement (16a), the form (40) is independent
of any arbitrary constant such as c1, c3, c5 or c6. Moreover, the form (40) exists with one
restriction on the potential parameters only, namely α1β1 = α2β2, whereas for the existence
of (34) we have two restrictions (cf equations (31)). For the integrability of the TID two-
dimensional system (1) one expects the existence of one more invariant (say, equation (34))
besides the Hamiltonian (1). The existence of the additional invariant (40) also for the same
system (1), however, indicates the superintegrability [2, 3] of the system (1).

Case II. After identifying α = (1/m), β = mω2, the potential function of system (2) can be
written as

V (x1, x2, p1, p2) = 1
2β(x

2
1 + x2

2 ) + f (p1x2 − p2x2) (41)

and for this case note from (8) that v1 and v2, namely

v1 = −α(βx1 − fp2) v2 = −α(βx2 + fp1) (42)

turn out to be momentum-dependent functions in contrast to assumption (25). Therefore,
the construction of the invariant using the rationalization method in this case becomes rather
involved. For system (2), when it is partitioned in the form

H2 = H
(1)
2 + H

(2)
2 (43)

where

H
(1)
2 = 1

2α(p
2
1 + p2

2) + 1
2β(x

2
1 + x2

2 ) H
(2)
2 = f (p1x2 − p2x1) (44)

one can note that each H
(1)
2 and H

(2)
2 , separately, are the constants of motion of the system

since H
(1)
2 represents the Hamiltonian for a pair of decoupled oscillators and H

(2)
2 is the

third component of the angular momentum. However, we shall carry out some nontrivial
constructions for this case in the next section using the Lie algebraic method.

3. Time-dependent invariants

Here, using the Lie algebraic approach outlined in section 1, we derive the invariants for the
case when the parameters in systems (1) and (2) are TD.

3.1. Invariant for H1

In order to express H1 of (1) in the form (4) we make the following identifications for the phase
space functions �i and the coefficient functions hi :

�1 = 1
2p

2
1 �2 = 1

2p
2
2 �3 = p1p2

�4 = 1
2x

2
1 �5 = 1

2x
2
2 �6 = x1x2

(45a)

h1 = α1(t) h2 = α2(t) h3 = α3(t)

h4 = β1(t) h5 = β2(t) h6 = β3(t).
(45b)
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Further note that the closure of the dynamical algebra requires four more �l in this case,
namely �7 = p1x1; �8 = p1x2; �9 = p2x2, �10 = p2x1 with the corresponding hl as
h7 = h8 = h9 = h10 = 0. Also, the nonvanishing Poisson brackets in (8) computed using (6),
now turn out to be

[�1, �4] = −�7 [�1, �6] = −�8 [�1, �7] = −2�1

[�1, �10] = −�3 [�2, �5] = −�9 [�2, �6] = −�10

[�2, �8] = −�3 [�2, �9] = −2�2 [�3, �4] = −�10

[�3, �5] = −�8 [�3, �6] = −�7 − �9

[�3, �7] = −�3 [�3, �8] = −2�1 [�3, �9] = −�3

[�3, �10] = −2�2 [�4, �7] = 2�4

[�4, �8] = �6 [�5, �9] = 2�5 [�5, �10] = �6

[�6, �7] = �6 [�6, �8] = 2�5

[�6, �9] = �6 [�6, �10] = 2�4 [�7, �8] = �8

[�7, �10] = −�10 [�8, �9] = �8

[�8, �10] = �7 − �9 [�9, �10] = �10.

(46)

Substitution of these results in (8) and the subsequent rationalization of the resultant expression
with respect to �i yield the following set of differential equations for λk:

◦
λ1 = −2α1λ7 − 2α3λ8 (47a)
◦
λ2 = −2α2λ9 − 2α3λ10 (47b)
◦
λ3 = −α3λ7 − α2λ8 − α3λ9 − α1λ10 (47c)
◦
λ4 = 2β1λ7 + 2β3λ10 (47d)
◦
λ5 = 2β3λ8 + 2β2λ9 (47e)
◦
λ6 = β3λ7 + β1λ8 + β3λ9 + β2λ10 (47f)
◦
λ7 = β1λ1 + β3λ3 − α1λ4 − α3λ6 (47g)
◦
λ8 = β3λ1 + β2λ3 − α3λ5 − α1λ6 (47h)
◦
λ9 = β2λ2 + β3λ3 − α3λ6 − α2λ5 (47i)
◦
λ10 = β3λ2 + β1λ3 − α3λ4 − α2λ6. (47j)

As such the general solution of these ten coupled differential equations is a difficult task.
Therefore, we resort to particular solutions of these differential equations and demonstrate
the computation of the invariant for the case of equal mass and equal frequency, namely
α1 = α2 = α, β1 = β2 = β. Further, we make an ansatz

◦
λ1 = ◦

λ2 = −2
◦
ψ(t) (48a)

leading toλ1 = −2ψ+c1, λ2 = −2ψ+c2. These choices immediately convert equations (47a)–
(47e) to the forms

α(λ7 − λ9) + α8(λ8 − λ10) = 0

λ8 + λ10 = 2ᾱ3

◦
ψ + ᾱ

◦
λ3

λ7 + λ9 = −2ᾱ
◦
ψ − ᾱ3

◦
λ3



Construction of exact dynamical invariants in coupled oscillator problems 9887

◦
λ4 =

(
β +

αβ3

α3

)
(λ7 − λ9) + 2

◦
ψ(β3ᾱ3 − βᾱ) + (ᾱβ3 − ᾱ3β)

◦
λ3

◦
λ5 = −

(
β +

αβ3

α3

)
(λ7 − λ9) + 2

◦
ψ(β3ᾱ3 − βᾱ) + (ᾱβ3 − ᾱ3β)

◦
λ3

where ᾱ = α/(α2
3 − α2); ᾱ3 = α3/(α

2
3 − α2). An inspection of these results allows us to

assume
◦
λ3 = 0, i.e. λ3 = constant c3 (say) and λ7 = λ9 for simplicity. This implies a lot

of simplification in the determination of the remaining λ’s from equations (47f )–(47j ). In
particular, one immediately obtains

◦
λ4 = ◦

λ5 = 2
◦
ψ(β3ᾱ3 − βᾱ) (48b)

leading to

λ4 = σ1(t) + c4 λ5 = σ1(t) + c5 λ6 = σ2(t) + c6 (48c)

λ7 = λ9 = −ᾱ
◦
ψ λ8 = λ10 = ᾱ3

◦
ψ (48d)

where

σ1(t) = 2
∫ ◦

ψ(β3ᾱ3 − βᾱ) dt σ2(t) = 2
∫ ◦

ψ(βᾱ3 − β3ᾱ) dt (48e)

and ci (i = 1, 2, . . . , 6) are the constants of integration. In this way all ten λi are determined.
Further we set c1 = c2 = c4 = c5 = c6 = 0, and use these results for λi in (7) to obtain the
final form of the invariant I , namely

I = −ψ(t)(p2
1 + p2

2) + 1
2σ1(t)(x

2
1 + x2

2 ) + c3p1p2 + σ2(t)x1x2

−ᾱ
◦
ψ(p1x1 + p2x2) + ᾱ3

◦
ψ(p1x2 + p2x1) (49)

for the system

H1 = 1
2α(t)(p

2
1 + p2

2) + 1
2β(t)(x

2
1 + x2

2 ) + α3(t)p1p2 + β3(t)x1x2. (50)

Here, ψ(t) satisfies the constraining relations

ᾱ3

◦◦
ψ +

◦
ᾱ3

◦
ψ = −2β3ψ + βc3 − α3σ1 − ασ2

ᾱ
◦◦
ψ +

◦
ᾱ

◦
ψ = 2βψ − β3c3 + ασ1 + α3σ2.

(51)

3.2. Invariant for H2

To obtain the TD invariant for system (2), we make the following �i and hi identifications:

�1 = 1
2p

2
1 �2 = 1

2p
2
2 �3 = 1

2x
2
1

�4 = 1
2x

2
2 �5 = p1x2 �6 = p2x1

(52a)

h1 = h2 = α(t) h3 = h4 = β(t)

h5 = −h6 = f (t) with α(t) = 1/m β(t) = mω2.
(52b)

The additional �l needed to close the algebra are

�7 = p1p2 �8 = p1x1 �9 = p2x2 �10 = x1x2 (53)
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with h7 = h8 = h9 = h10 = 0. The number of nonvanishing Poisson brackets, in this case,
turns out to be the same as for H1 in section 3.1, namely

[�1, �3] = −�8 [�1, �6] = −�7 [�1, �8] = −2�1 [�1, �10] = −�5

[�2, �4] = −�9 [�2, �5] = −�7 [�2, �9] = −2�2 [�2, �10] = −�6

[�3, �5] = �10 [�3, �7] = �6 [�3, �8] = 2�3 [�4, �6] = �10

[�4, �7] = �5 [�4, �9] = 2�4 [�5, �6] = −�9 + �8

[�5, �7] = 2�1 [�5, �8] = −�5 [�5, �9] = �5 [�5, �10] = −2�4

[�6, �7] = 2�2 [�6, �8] = �6 [�6, �9] = −�6 [�6, �10] = −2�3

[�7, �8] = −�7 [�7, �9] = −�7 [�7, �10] = −�8 − �9

[�8, �10] = −�10 [�9, �10] = −�10.

(54)

As before, the substitution of these results in (8) for system (52) yields the following set of ten
differential equations, namely

◦
λ1 = 2f λ7 − 2αλ8 (55a)
◦
λ2 = −2f λ7 − 2αλ9 (55b)
◦
λ3 = 2βλ8 + 2f λ10 (55c)
◦
λ4 = 2βλ9 − 2f λ10 (55d)
◦
λ5 = βλ7 − f λ8 + f λ9 − αλ10 (55e)
◦
λ6 = βλ7 − f λ8 + f λ9 − αλ10 (55f)
◦
λ7 = −f λ1 + f λ2 − αλ5 − αλ6 (55g)
◦
λ8 = βλ1 − αλ3 + f λ5 + f λ6 (55h)
◦
λ9 = βλ2 − αλ4 − f λ5 − f λ6 (55i)
◦
λ10 = −f λ3 + f λ4 + βλ5 + βλ6. (55j)

As before, we look for the particular solutions of these coupled differential equations by making
suitable choices for some of the λi . It can be seen that equations (55e) and (55f ) are identical,
immediately leading to

λ5 = η(t) + c5 λ6 = η(t) + c6 (56)

where c5 and c6 are the constants of integration and
◦
λ5 = ◦

λ6 = ◦
η (say). Further note from

equations (55a)–(55d) and (55g)–(55j ) that
◦
λ1 +

◦
λ2 = −2α(λ8 + λ9) (57a)

◦
λ3 +

◦
λ4 = 2α(λ8 + λ9) (57b)

◦
λ8 +

◦
λ9 = β(λ1 + λ2) − α(λ3 + λ4) (57c)

◦
λ10 +

β

α

◦
λ7 = f

β

α
(−λ1 + λ2) + f (−λ3 + λ4). (57d)

In view of equations (57c) and (57d) we discuss the following two cases in terms of the ansatz
for λi :

Case 1: Let

λ1 = λ2 = ψ(t) λ3 = λ4 = ρ(t)
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then other λi can immediately be obtained as

λ7 = −2σ1 − α(c5 + c6)t + c7

λ8 = σ4 − σ5 + 2σ6 + (c5 + c6)σ7 + c8

λ9 = σ4 − σ5 − 2σ6 − (c5 + c6)σ7 + c9

λ10 = 2σ2 + σ3(c5 + c6) + c10

where ci are the constants of integration and σi are the time integrals given by

σ1(t) =
∫

αη dt σ2(t) =
∫

βη dt σ3(t) =
∫

β dt σ4(t) =
∫

βψ dt

σ5(t) =
∫

αρ dt σ6(t) =
∫

f η dt σ7(t) =
∫

f dt.
(58a)

with a constraining relation

α
◦
ρ +β

◦
ψ = 0. (58b)

In this case a lot of simplification can be achieved if one assumes η(t) = 0 and c6 = −c5.
This will lead to σ1 = σ2 = σ6 = 0, λ7 = c7, λ10 = c10, λ8 = σ̄ + c8, λ9 = σ̄ + c9 with
σ̄ = σ4 − σ5 = ∫

(βψ − αρ) dt , and finally to the invariant (7) in the form

I = 1
2ψ(p2

1 + p2
2) + 1

2ρ(x
2
1 + x2

2 ) + σ̄ (p1x1 + p2x2) + c5(p1x2 − p2x1)

+c7p1p2 + c8p1x1 + c9p2x2 + c10x1x2 (59)

for the system (2).

Case II. If we set

λ1 = −λ2 = φ(t) λ3 = −λ4 = χ(t) λ8 = −λ9 = ξ(t) (60a)

in equations (57), then one can obtain the invariant without time integrals of the type (58a).
In this case other λi from (55g)–(55j ) turn out to be

λ7 = (
◦
φ +2αξ)/2f ≡ a(t) (say) λ10 = (

◦
χ −2βξ)/2f ≡ b(t) (say) (60b)

the invariant can be obtained immediately from (7) as

I = 1
2φ(p

2
1 − p2

2) + 1
2χ(x

2
1 − x2

2 ) + η(p1x2 + p2x1) + c5(p1x2 − p2x1)

+a(t)p1p2 + ξ(p1x1 − p2x2) + b(t)x1x2 (61)

for the system (2) with the following constraining relations (cf equation (55e)):
◦
η = βa(t) − 2f ξ − αb(t)

◦
a = −2(f φ + αη)

◦
b = −2(f χ − βη). (62)

It may be remarked that for a suitable ansatz for λi this class of Hamiltonian systems along
with the invariant (61) (or for that matter (59)) may constitute [23] the real and imaginary parts
of a complex Hamiltonian in the spirit of the analyticity property of the latter.

To demonstrate the viability of the Lie algebraic method for a rather simpler TID version
of H2,we rewrite equations (55a)–(55d) as

f c7 − αc8 = 0 (63a)

f c7 + αc9 = 0 (63b)

βc8 + f c10 = 0 (63c)

βc9 − f c10 = 0 (63d)
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rewrite equations (55e) and (55f ) as

f (c9 − c8) − αc10 + βc7 = 0 (63e)

and (55g)–(55j ) as

f (−c1 + c2) − α(c5 + c6) = 0 (63f)

β(c1 + c2) − α(c3 + c4) = 0 (63g)

f (−c3 + c4) + β(c5 + c6) = 0 (63h)

where λm(t) in (55) are now replaced by constants cm, m = 1, . . . , 10, thereby reducing (8) to
the form dI

dt = [I,H ] = 0. The solution of equations (63a)–(63d) can be written immediately
in terms of a constant k1 as

c8 = −c9 = k1 c7 = αk1/f c10 = −βk1/f (64)

with a constraint

f 2 = αβ. (65)

With regard to the solution of equations (63e)–(63h) two cases in terms of the setting
of the constants ci , i = 1, . . . , 6, are possible. In the first case, if we set c1 = c2 = k2,
c5 = −c6 = k3 which implies c3 = c4 = (βk2/α), then the invariant from (7), after using (52)
and (53), turns out to be

I = 1

2
k2

[
p2

1 + p2
2 +

β

α
(x2

1 + x2
2 )

]
+ k3(p1x2 − p2x1)

+k1

[
p1x1 − p2x2 +

1

f
(αp1p2 − βx1x2)

]
. (66)

On the other hand, setting c1 = −c2 = k4; c3 = −c4 = β

α
k4, c6 = − 2f

α
k4 − c5 along with the

results (64) yields the invariant (7) in the form

I = 1

2
k4

[
p2

1 − p2
2 +

β

α
(−x2

1 + x2
2 ) − 4f

α
p2x1

]
+ c5(p1x2 − p2x1)

+k1

[
p1x1 − p2x2 +

1

f
(αp1p2 − βx1x2)

]
(67)

for the TID system (2). Note that each of the forms (66) and (67) of the TID invariant involves
three arbitrary constants and the same exist with the common constraint (65) on the potential
parameters. In other words, the invariant for the system H2 exists in the resonance region
particularly when equation (65) expressed as f = ω2 holds for the resonance since f is
analogous to the forcing frequency and ω is the natural frequency.

4. Concluding discussion

After having investigated a more complicated class of Ermakov systems in three dimensions
in [19], in this work we have once again exploited the rationalization and dynamical algebraic
methods for the construction of exact invariants for the somewhat simpler two-dimensional
coupled oscillator problem. As a matter of fact the systems ignored in the previous [19]
work, particularly the ones involving both coordinate- and momentum-dependent couplings
are investigated here with a possible generalization of the rationalization method to this effect.
This is done to highlight the viability of these methods mainly for the case of momentum-
dependent systems whose study in recent years has become desirable from the point of view
of practical applications of these constructs in different contexts [9–14].
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As pointed out in section 1, firstly the existence of an invariant for a dynamical system is
questionable. If the invariant exists, then its construction, in general, is a difficult task. Once
it is constructed and becomes available then not only its physical interpretation(s) but also
its viability with regard to a better theoretical understanding of a given phenomenon is often
a problem. In spite of all this, the availability of a few or all [4] invariants for a dynamical
system definitely offers [3, 24] insight into the finer details as far as an understanding of the
phenomenon is concerned. Often the applications of these constructs in different branches of
theoretical science (see, e.g., [3] ch 7) are carried out on the basis of structural analogy [24]
and at times by incorporating additional assumptions in the model concerned. With regard
to the role of the constructs obtained in sections 2 and 3 in the study of coupled oscillator
systems (1) and (2) the following remarks are in order:

(1) It may be noted that within the framework of the Lie algebraic approach, since the invariants
are basically the superposition of a certain class of phase space functions (cf equation (7)),
they can also offer alternative versions of the given Hamiltonian describing the same
system but in totality. However, in these new equivalent forms of the Hamiltonian
the individual terms may have different physical meanings from the point of view of
couplings. Moreover, the standard structure of the Hamiltonian as ‘the sum of kinetic
and potential energy terms’ often gets disturbed in these alternative versions but at the
cost of a, perhaps simplified (!), description of the system with regard to its evolution in
time. From this point of view the construction (61) (or for that matter (67)) for system (2)
can be considered [25] as the Hamiltonian corresponding to indefinite kinetic energy and
studied in the context of plasma physics. In fact, it has been argued [25] in the literature
that only those two-dimensional Hamiltonians which deal with separable potentials give
rise to positive definite kinetic energies. Clearly, H2 of equation (2) is not such a choice.
While our future studies will reveal more on this front, it appears now that certain features
of the equations of motion (like linearity or nonlinearity) are retained when using the Lie
algebraic approach through the closure property of the algebra. This, however, may not
be the case in using the rationalization method, which otherwise appears to be more sound
but considerably involved for the construction of dynamical invariants.

(2) In coupled mechanical oscillator problems, the transfer of energy from one oscillator to the
other is attributed mainly to the x1x2-coupling term in the Hamiltonian. In the description
using equivalent versions (invariants) these features might manifest through some other
terms—maybe through the momentum-dependent ones. In the context of electrical circuits
the role of invariant(s) can manifest through ‘equivalent’ circuit diagrams for which the
analysis perhaps becomes easier (!). For example, the capacitor coupling in one case may
become [9,11] the inductor coupling in another case or vice versa, thereby suggesting the
design of equivalent circuits for the same purpose.

(3) It is well known [26] that Bell’s-inequality experiments are performed using harmonic
oscillators since the photons, acting as oscillators, are excitations of modes of the
underlying electromagnetic field. In particular, four harmonic oscillators having pairwise
coupling at a time are considered to allow the exchange of energy leading to the preparation
of a pair initially in an entangled state. Note that the TID versions of the invariant
(cf equations (34) or (40)) particularly for system (1) could be of immediate concern in
the analysis [10] of these experiments with a suitable choice of the arbitrary constants and
couplings.

(4) Although TD systems now appear in different branches of mathematical sciences it may
be of interest to investigate the role of the TD constructs of section 2 in the areas of lumped
electrical circuits [11] and femtochemistry [27].
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